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Introduction 

Motivation 

Air pollution is too serious menace to the residents in 
cities worldwide, when they are vulnerable to respiratory 
related illness (see Dominici et al., 2000 for details). 
More often than not, air pollution is life threatening to 
patients with asthma or respiratory complications 
(Louwies et al., 2013). Air pollution data are 
meticulously collected but are not well utilized to learn 
their intricate patterns. A reason is detected and it is the 
lack of suitable analytic methodology. After a thorough 
literature search, we notice that no satisfactory 
underlying probability model for the air pollution data 
seems to have been identified in the literature. We 
propose and construct a versatile model called Tapered 
Probability Function (TPF) to address the significance of 
the regulated level of the air pollution in this article.  

The TPF is not popular among the healthcare 
professionals but it is popular among the geologists who 
deal with the earthquakes. See Kagan and Schoenberg 
(2001) for details on the earthquake application of the 
TPF. Estimation and hypothesis testing of the parameters 
in TPF are still technical challenges. To ease the 
mathematical and computational difficulties of the TPF, 
an innovative approach is devised, presented and 
explained in this article. New expressions for the 
methodology are derived, displayed and interpreted in 
the context of discussion about air pollutions. This new 

approach is utilized to assess the significance of an 
estimated regulated level of the air pollution in major 
cities across the African, Asian, American, European 
and Oceanic continents. The contents of this article 
are made easier for the applied healthcare in their 
practice to test the significance of an estimated 
regulated level of the air pollution. 

A threat to live healthy in this advanced electronic 
age of 21st century is the air pollution related hazards. 
See Mateen and Brook (2011) for details about the 
health impacts of air pollution. What is air pollution? Air 
pollution refers the existence of harmful visible or 
invisible substances including particulates and molecules 
in the earth's atmosphere. Air pollution has adverse effects 
on human health. The World Health Organization warned 
that the air pollution in the year 2014alone caused the 
premature death of 7 million people worldwide with the 
highest death rate in India compared to other nations. See 
Mateen and Brook (2011) for details.  

The developing nations aspire to improve their 
standard of life. Their industrial or agricultural activities 
are the source of air pollutions. The developed nations 
tend to maintain their higher standard of living by 
continuing on their automobile emissions caused air 
pollutions. For a different reason, the developing and 
developed nations do pollute air. What do the air pollution 
data suggest about who among the developed and 
developing nations pollute more? Shanmugam and 
Hertelendy (2011) answered this question. Stronger policies 
to reduce the emission of air pollutants globally would help.  
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More and more industrial wastes are dumped to air, 
land and water sources and they cause tremendous 
illnesses. In this process, a significant amount of oxygen 
in the natural environment is depleted with an increase of 
adverse toxics in the air. Mainly recognized three 
culprits in the air pollution are PM10, SO2 and NO2.  

How does PM10 affect our health? When the PM10 is 
inhaled, the particles evade the respiratory system's 
natural defense and lodge deep deposit in the lungs 
(Pope et al., 2002). Health problems begin to arise as the 
body reacts to these foreign particles. The "sensitive 
populations" to PM10 are children, elders, exercising 
adults and those suffering from asthma or bronchitis. The 
presence of PM10 increases the severity of asthma attacks, 
cause bronchitis, inflict lung diseases and reduce the 
body's ability to fight infections (see Weinmayr et al., 
2010 for details). See Figure 1 through Figure 3 for the 
trend of PM10 in global major cities in Africa, America, 
Asia, Europe and Oceanic continents. 

The SO2 denotes sulfur dioxide and it is a toxic 
chemical gas with a pungent, irritating smell. More 
often, it is by volcanos. In ancient times, Romans 
injected SO2 into wine bottles to keep wine fresh and 
free from bad smell. Inhaling SO2 causes respiratory 
difficulties and related lung diseases.  

The NO2 is a reddish-brown chemical gas with odor 
and is often a by-product of human activities, volcanos 
and lightning (see Figure 10, Figure 11 and Figure 12). 
The NO2 absorbs sunlight and ozone’s thickness. 
Abundant NO2 in air triggers skin cancer, mild irritation in 
nose and throat, bronchitis, pneumonia and lung diseases.  

It appears from the data (see Table 2 and Figure 13 
for details) that the level of PM10 is more when the 
level of SO2 is more and vice versa. Hence, this article 
selects and focuses just the pollutant PM10 for data 
analytics and continental comparisons (see Figure 1 
through Figure 5 for the trend in African, American, 
Asian, Europe and Oceanic continents).  

Data are collected in general worldwide to 
understand the patterns, sources and practical ways to 
reduce air pollutions if not their total elimination. 
However, the efforts are not satisfactory enough always. 
Why is it so? It is perhaps due to a lack of suitable data 
analytic methodology, which requires finding a suitable 
underlying model for the collected data. What is 
model? The model is an abstraction of the reality. The 
model has to be simple and yet, powerful to capture the 
essence in reality. One such powerful model, which 
could help to capture and assess the regulated level of 
the air pollution is TPF. 

Returning to the discussion of air pollutants, what is 
particulate matter, PM10? It refers to fine suspended 

(less than 10 microns in diameter which is 1/7th 
thickness of the human air) capable of penetrating deep 
into the  respiratory  tract  and  causing  health damage. 
 

 
  
Fig. 1. Africa’s PM10 
 

 
 
Fig. 2. America’s PM10 
 

 
 
Fig. 3. Asia’s PM10 
 

 
 
Fig. 4. Europe’s PM10 
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Table 1. Average population, PM10, SO2 and NO2 among countries 
  PM10  SO2  NO2 
Continent Average Population ---------------------------------- ------------------------------ --------------------------- 
 (#nations) in 1,000 Ave Min Ave Min Ave Min 
Asia (38) 6,438 75.52 31 81 6.00 54.79 13 
America (11) 9,045 28.81 10 24.54 1.0 62.54 5.00 
Europe (33) 2,533 28.60 11 19.51 3.00 55.09 20 
All (82) 5,069 48.57 10 46.75 1.00 55.29 5.00 

 
Table 2. Correlation (with p-value) among PM10, SO2 and NO2, 

controlling population  

 var
var

↓
→

iable
iable

 PM10 SO2 NO2 

PM10 1 0.47 (0.000) 0.02 (0.83) 
SO2  1 0.18(0.10) 
NO2   1 

 

 
 
Fig. 5. Oceanic’s PM10 
 
See Pope et al. (2016) and Malley et al. (2017) for 
details on how the particulate matter destroys health. 
The PM10 is a mixture of materials such as smoke, soot, 
dust, salt, acids and metals. Where does PM10 come from? 
It appears in the atmosphere when gases are emitted from 
the motor vehicles or industries. Other sources include 
stoves, fireplaces, dust from construction, landfills, 
wildfires, brush burning, industrial sources and 
windblown dust from the open lands.  

The other two troubling air pollutants to a healthy 
living are sulfurdioxide (SO2) and nitrogendioxide 
(NO2). What is SO2? It is an airpollutant produced when 
fossil fuels containing sulfur are burned. It contributes to 
the acid rain and it can damage human health, particularly 
that of the young and the elders (see Counter and 
Buchanan, 2004 for details). The SO2 is a toxic gas with a 
pungent, irritating smell, released naturally by the 
volcanic activity. In the ancient days, the SO2 was entered 
by burning sulfur candles inside empty wine vessels to 
keep the wine fresh and free from vinegar smell. The SO2 
is a noticeable in the regular atmosphere. The SO2 is a 
precursor to the acid rain and all health problems.  

What is NO2? The NO2 is a chemical compound due 
to industrial synthesis of the nitric acid. At a higher 
temperature, the NO2 appears as a reddish-brown gas 

with a biting odor. It is a paramagnetic, bent molecule. It 
is introduced into the environment by several natural 
causes. It is used in the space vehicles such as the Titan 
rockets by the NASA and space agencies. The NO2 is a 
poisonous, pungent gas formed when nitric oxide 
combines with hydrocarbons and sunlight. See 
Weinmayr et al. (2010) for details.  

What are the tolerance levels of the air pollutions? 
The World Health Organization (WHO) recommends no 
more than20 micrograms per cubic meter for PM10, no 
more than 40micrograms forNO2 and no more than20 
micrograms per cubic meter for SO2 
(http://apps.who.int). In accordance with the US Clean 
Air Act, the Environmental Protection Agency (EPA) 
often reviews the national air quality standards for PM10, 
SO2 and NO2. The remedies to control air pollutions are 
dust control in roads, building constructions, landfills, 
landscaping, barrier, fencing to reduce windblown dust, 
programs to reduce emission from wood stoves and 
fireplaces, cleaner-burning gasoline and diesel fuels, 
emission control devices for motor vehicles, controls for 
industrial facilities etc.  

Extracting pertinent evidence from the collected air 
pollution data and learning the realities using appropriate 
analytics to formulate healthy environmental policies or 
to execute regulating procedures are too technical 
stumbles for the practicing environmentalists on daily 
basis. To alleviate such stumbles, this article is prepared, 
articulated and demonstrated with real data on air 
pollution. One unique environmental policy for all 
worldwide cities is a feasible target. 

This article first introduces formally in the next 
section a versatile and powerful model called Tapered 
Probability Function (TPF) with its statistical properties. 
The aims of this article are to construct a data analytic 
methodology to use for a statistical comparison of the 
cities across three ambitiously industrializing continents 
(namely African, Asian, American, European and 
Oceanic) with respect to their air pollution levels. Neat 
new expressions are derived in this article to make a 
hypothesis testing of an estimated regulated level of the 
air pollution. The p-values and statistical powers for the 
three continents are calculated and compared (see 
Abramowitz and Stegun, 1972 for details). By emulating 
our new methodology of this article, practicing 
environmentalists could analyze the air pollution data of 
their own, rank and classify the places in different groups.  
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How Tapered Frequency Distribution Canassess 

Air Pollution Level?  

To begin with, let Y be a random variable indicating 
the air pollution level in a city at a specified time. With 
the parameters θ>0,τ≥0 and φ≥0 denoting respectively 
the severity level, a threshold level and an regulated 
level of the air pollution pattern, let the probability 
density function: 
 

1
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φ τ
θφ τ
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θ
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with a survival function: 
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be the underlying model for the data on Y. The model 

(1) is called Tapered Probability Function (TPF). A 
reason for selecting the TPF (1) is for its versatility to 
portray the regulated level of the air pollution. The TPF is 
quite familiar to the geologists who unravel the mysteries 
behind the earthquakes. The TPF is not that much familiar 
to the environmentalists or healthcare professionals who 
deal with air pollution or its impact on health. Some 
heuristic introductions of the TPF are worthwhile.  

First, is f (y|τ, θ, φ) in (1) a bona fide probability 
function? To be a bona fide, a function should be non-
negative and the area under the functions should add up 
to one. For the specified parametric space 
0 ; 0; 0;τ θ φ≤ > ≥ and the sample space 0 τ≤ ≤ < ∞y , the 

function ( , , )τ θ φf y  is non-negative. In addition, the 

area under the non-negative function is one because 

1
1

φ φτ τ
θ θ

τ τ

φ τ τ
θ

− −   ∞ ∞− −   
        = −     

     
∫ ∫

y y
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y y y
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Hence, the function ( , , )τ θ φf y  in (1) is indeed a 

bona fide probability function. Some heuristic 
interpretations of the TPF (1) now follows. First, the Tail 
Value at Risk (TVaR) of air pollution function is: 
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What does the TVaR (3) refer? Given the air 

pollutionexceeds a tolerance mark yp (recall that asthma 
and other respiratory patients in cities like Beijing, 
Denver, Delhi, Albuquerque among other global cities 
are advised not to leave home when the pollution level is 

too dangerous), the average pollution level (see Table 1) 
on the day is what the expression ( )> pE Y Y y  in (3) 

indicates. Notice that it increases as the regulated 
parameter φ≥0 increases. Of course, the severity 
parameter θ>0 also plays a role. Furthermore, in such a 
day for asthma and other respiratory patients not to leave 
their home, will the pollution not worsen by staying within 
an extra level “s”? This is called hope probability and it is: 
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See Figure 6 for the dynamics of the hope probability 

in z-axis, θ  in x-axis and φ in y-axis with m = 10 and s=1. 
Two things need to be noticed in hope probability (4). They 
are: (1) when the regulated level, φ diminishes to zero due 
to complete control or as the severity parameter, θ 
diminishes, the hope probability is lesser and (2) the hope 
probability is lesser when the added amount “s” is larger. 

However, if the air pollution exceeds the tolerance 
mark “t”, will it remain within the safety mark “m”? This 
is called safety probability and it is: 
 

( )
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The safety probability (5) vanishes, when the 

tolerance and safety marks are closer. When the 
regulated parameter φ approaches zero (due to strict 
environmental regulations), thesafety probability (5) 

converges to only a finite non-zero amount 
( )

1 θ
−

−
−

m t

e , but 
not zero unless the severity rate θ is extremely large. For 
a larger pollution severity (that is, θ→∞), the safety 

probability (5) converges to a larger amount 1 ( )φ−
t

m
 

depending only on the regulated parameter φ. Such 
observations warn us the importance of dealing 
simultaneously both the severityand the regulated 
parameters in discussions of air pollution.  

How much memory of the past air pollution pattern is 
kept by the nature? That is, if the air pollution has 
crossed a tolerance mark m, how probable for the pattern 
to continue so the air pollution will exceed an additional 
allowance “S”? An answer to this question resides in the 
memory function (6). That is: 
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Fig. 6. Hope probability in z-axis, s in x-axis and m in y-axis 
 

 
 

Fig. 7. Monotonic decreasing memory in z-axis, s in x-axis and m in y-axis 
 
 

From the memory function (6), realize that the 
nature’s decreasing memory is expedited by two 

different co-factors. The first factor 1
φ−

 + 
 

s

m
 

accommodates the influence by the regulated parameter 
φ. The second factor accommodates the influence by the 
severity parameter θ . See Figure 7 for how the dynamics 
of the nature’s memory changes as both the severity and 
regulated parameters shift. We would have missed the 
above observations without using TPF (1). 

So far, we have witnessed several advantages of 
using the TPF (1) to capture and interpret all about air 
pollutions. The mathematical difficulties of the TPF do 
continue as we proceed to construct a data analytic 
methodology. To begin realizing it, note that the mean 

( , , )τ θ φE y  and variance, ( , , )τ θ φVar y  of the TPF (1) 

are: 
 

, ,( , , ) ,τ θ φτ θ φ τ= +E y Shift  (7) 
 
where, φθ = τ and hence, the pollution level shifts from 
the threshold, τ and the shift is: 
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And: 
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, , , ,

( , , )

2 [ 2 (1 ) ]τ θ φ τ θ φ

τ θ φ

τ θ φ= + − −

Var y

Shift Shift
  (9) 

 
The chi-squared distribution function, 2Pr( )χ >mdf a  

has been widely tabulated and it is made available. 
Usually the Moment Estimators (ME) are easier, in 
general, compared to the Maximum Likelihood 
Estimators (MLE). However, for the TPF (1), even the 
MLEs are difficult as they are seen in (7) and (8) when 
the regulated parameter approaches one.  

Let us now find the MLE. For this purpose, consider 
a random sample 1 2, ,.. ny y y  from the TPF (1). The 

obvious Maximum Likelihood Estimator (MLE) of the 
threshold parameter τ is: 
 

1 2 (1)ˆ min( , ,.. )τ = =ny y y y  (10) 
 
for the likelihood function to be non-zero. Then, the log-
likelihood function is: 
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Now, with the notation τ̂∂  indicating the derivative 

with respect to τ̂ , equating the score function 

ˆ ˆln ( , , ) 0τ τ θ φ∂ =L  provides an estimated balancing 

expression: 
 

(1)
ˆ ˆτ̂ φθ= =y  (12.a) 

 
where, φ̂  and θ̂  are MLEs of the regulated level and 
severity level of the air pollution and are yet to be found. 
See Figure 8 about the triangular relation among 
parameters. Reversing their estimates, we notice a non-
estimated balancing expression: 
 
φθ τ=  (12.b)  
 

The expression (12.b) may be heuristically 
interpreted in a sense as follows. Recall that the 
parameters θ and φ respectively portray the severity and 
regulated level of the air pollution. In practice, when the 
air pollution’s severity is more, the regulated level must 
have been lesser and vice versa.  

The expression (12) asserts that for a specified 
threshold τ̂ , the efforts are to reduce the estimated 

regulated level φ̂  for a higher estimated severity θ̂  and 
vice versa. The MLEs are the simultaneous solutions of 
the nonlinear score functions ˆln ( , , ) 0φ τ θ φ∂ =L  and 

ˆln ( , , ) 0θ τ θ φ∂ =L  of the log-likelihood (11). Each of the 
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because of (12). To find the initial value of the φ̂

MLE
, we 

consider a limiting scenario ˆln ( , , )τ θ φ →∞L  of the 
likelihood function. After algebraic simplifications, the 
MLEs are then obtained and they are: 
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Fig. 8. Nonlinear balancing relation τ̂  in z-axis, φ̂  in x-axis and θ̂  in y-axis 

 
where, I2×2 is the expected Fisher’s information matrix, 

2∂ ij  is the second derivative with respect to i and j . That is: 
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The E(Y) is derived in (7). The determinant of the 

Fisher’s information matrix is: 
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What is hazard function for the TPF? The hazard 

function is the ratio of the probability function over the 
survival function. In the survival analysis, the hazard 
function is recognized as the failure rate function. The 
hazard function for the TPF (1) is much simpler 
expression: 
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See Figure 7 for the graphics of (19). The hazard 

function (19) is impacted by both the air pollution’s 
severity and regulated level. See Patel and Schoenberg 
(2011) for details about the graphical approaches. In a 
scenario of higher air pollution’s severity (that is, θ→∞ 
), the air pollution’s regulated level has a full advantage 

marginally on the hazard (that is, lim ( , , )
θ

φ
τ θ φ

→∞

 
=  
 

h y
y

). 

In a scenario of completely controlled and reduced air 
pollution by the regulated (that is, φ→0), the air 
pollution’s severity has a full advantage marginally on 

the hazard function (that is, 
0

1
lim ( , , )
φ

τ θ φ
θ→

 =  
 

h y ).  

To advise asthma and other respiratory patients, the 
healthcare professionals wonder, at times, whether an 
estimated air pollution’s regulated level, φ̂  is 
statistically significant. This amounts to testing the null 
hypothesis : 0φ =oH  against an alternative hypothesis 

1 1: 0φ φ= ≠H , where 1φ  is a specified value. For this 

purpose, the Wald’s (1943) likelihood ratio approach is 
resorted. The Wald’s approach is a powerful data 
analytic methodology.  

In our context, to test the null hypothesis : 0φ =oH  

against an alternative hypothesis 1 : 0φ ≠H , we will use 

the log-likelihood ratio test statistic (20) below: 
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which follows a non-central chi-squared probability 
distribution with one degrees of freedom (df) and the 

non-centrality parameter 
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respectively the arithmetic, harmonic and logarithmic 
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means of the data (see Johnson et al., 1995 for details). 
Note that: 
 

2 2 2
(1)

ˆ

(1)

ˆ
ˆ2 ( )

φ
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φ

+ −
≈

− −

ys y y

y y y
 (21.a) 

 

 
2 2 2

(1)

0
ˆ

2φθ =

+ −
≈

ys y y

y
 (21.b) 

 
And: 

 

(1)

1ˆ
ln

φ ≈
−LMy y

 (21.c) 

 
Stuart and Ord(1994) for properties of the non-central 

chi squared probability distribution. Recall that the 
MLE, ˆˆvar( )φ  of variance-covariance matrix which is the 
inverse of the estimated Fisher’s information matrix 

2 2
ˆ

x
I , in (18). Using the determinant (18) of the Fisher’s 

information matrix 2 2xI , the variance-covariance matrix 

is obtained and it is: 
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 (22.a) 

 

Hence, the variance is 
(1)

ˆvar {1 }
( )

φ θ
φ ≈ +

−n E y y
. 

Incidently, the correlation between the MLEs of the air 
pollution’s severityrate and the regulated level is: 
 

 
(1)

ˆ ˆ( , )
{ ( ) }

θ
θ φ

θ
≈ −

+ −
corr

E y y
 (22.b) 

 
Interestingly, the correlation (22.b) points out that 

when the air pollution’s regulated level (that is, φ) is low, 
the air pollution’s severity (that is, θ) is higher and it 
makes sense. Also, we notice from (22.b) that such a 
correlation is inversely proportional to the detected 
variability, ˆ( )φVar  of the estimated regulated levels, φ̂ . 
In other words, the more variability among the estimated 
regulated levels, φ̂  lessens the correlation between the 
estimated air pollution’s regulated and the severityrate.  

We now return to the hypothesis testing. Under null 
hypothesis, : 0φ =oH , note that the noncentrality 

parameter is: 

0

(1)

ˆ
ˆ
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{1 }φ

φ
δ

φ θ =

 
= ≈  
  +

−

o
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where, 
2 2 2

(1)

0
ˆ

2φθ =

+ −
≈

ys y y

y
.It is known that the non-

central chi squared probability distribution with one df 
and non-centrality parameter δ approximately follows 

1
1

δ
δ

 + + 
 times a central chi squared probability 

distribution with 
2{1 }

1 2

δ
δ

 +
 

+ 
 df (Stuart and Ord, 1994). 

This suggests that the null hypothesis oH : 0φ =  could be 

rejected in favor of an alternative hypothesis : 0φ =oH if: 
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where, the right side is the critical value based on the 
100(1-α)th percentile of the central chi squared 

probability distribution with 
2{1 }

1 2

δ
δ

 +
 

+ 
df and a 

significance effect α∈(0,1). We now write the p-value 
(23) for rejecting the null hypothesis in favor of an 
alternative hypothesis and it is: 
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  (23) 

 
The statistical power of the test statistic (20) can be 

calculated with a selection of a specific value for 1φ φ=  

in the alternative hypothesis. The statistical power is the 
probability of rejecting the null hypothesis : 0φ =oH  in 

favor of an alternative hypothesis 1 1: 0.5φ φ= =H . Under 

the alternative hypothesis, the minus log likelihood ratio is: 
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The expression (24) follows a non-central chi-

squared probability distribution with one df and non-
centrality parameter: 
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Where: 
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The non-central chi squared probability distribution 

with one df and non-centrality parameter 1δ̂  is 

approximately 1
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 times a central chi squared 
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 df. The power is the probability of 

accepting a true alternative hypothesis 1 1: 0φ φ= ≠H  . 

That is: 
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We now turn to discuss two extreme scenarios of the 

above mentioned data analytics. The first scenario is one 
in which the air pollution severity is highest (that is, 
θ→∞). The second scenario is one in which the air 
pollution’s regulated level is smallest (that is, φ→0).  

Scenario 1 (Pareto Distribution) 

When the air pollution severity rate is highest (that is, 
θ→∞), the TPF (1) becomes Pareto PDF: 
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as a special case with the survival function 
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. The mean and variance are:  
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What is Pareto distribution? Pareto (1897) introduced 

a power-law (later it was called Pareto distribution in his 

name) to describe the differential allocation of wealth in 
society. It provides a better-fitting alternative when other 
(such as the lognormal, half-normal, exponential, 
Frechet) distributions fails to fit less heavy tail frequency 
pattern. The hope probability (4) becomes  

Pr( ) (1 ) φ−≤ + > = +
s

Y m s Y m
m

. 

However, the safety probability (5) 

becomes Pr( ) 1 ( )φ≤ > = −
t

Y m Y t
m

. 

How much memory (6) of the past air pollution 
pattern is kept by the nature? That is: 
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The MLE of the threshold parameter τ is for 

1 2 (1)ˆ min( , ,.. )τ = =ny y y y  the likelihood function to be non-

zero. Also, the MLE is: 
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The hazard function in (19) is ( , , )
φ

τ θ φ
 

=  
 

h y
y

. 

Scenario 2 (Guaranteed Exponential Distribution):  

When the air pollution’s regulated level is negligible 
(that is, φ→0), the TPF (1) approaches guaranteed 
exponential PDF: 
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as a special case with the survival function 

( ), 0,
τ

θτ φ θ
− − 

 → =
y

S y e  . 

First, the tail value at risk (TVaR) in (3) of air 
pollution function becomes ( ) 0> →pE Y Y y . The hope 

probability in (4) becomes Pr( ) θ
−

≤ + > =
s

Y m s Y m e  . 

Thesafety probability (5) becomes 
( )

Pr( ) 1 θ
−

−
≤ > = −

m t

Y m Y t e  . 

How much memory of the past air pollution pattern is 
kept by the nature in this scenario? The memory function 

(6) is , , , , { 1}.
τ

θ θ
τ θ φ

−   − −   
   = −

m s

m smemory e e  

 The mean, ( , , )τ θ φE y  in (7) and variance, 

( , , )τ θ φVar y  in (8) become respectively 
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, ,( , , ) τ θ φτ θ φ τ= +E y Shift , where the pollution level shifts 

from the threshold, τ is / 2
, 2

2
2 Pr( )τ θ

τ θ

τ
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depending on just the air pollution’s severity θ and 
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The MLE of the threshold parameter 

1 2 (1)ˆ min( , ,.. )τ = =ny y y y  is for the likelihood function to 

be non-zero. Then, the log-likelihood function is 
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The MLE of the air pollution’s severity is 
2 2 2

(1)

, 0
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s y y

y y y
.  

Pollution in Africa, American, Asian, European and 

Oceania 

In this section, the data analytic methodology of the 
Section 2 is illustrated using the air pollution data of 
cities in American, Asian and European continents. Their 
minimum (Min) average (Ave) numbers are displayed in 
Table 1. The Min and Ave of PM10 as well as SO2 are 
more in Asia and it is a clue that the regulated is low in 
Asia. The American continent has higher average 
population in cities. A comparison of Fig. 8-10 reveals 
that in America and Europe, the NO2 is more than the 
PM10 and SO2. The variations in the levels of NO2, PM10 
and SO2 are about the same in Europe. In Asia, the 
levels of SO2 has a higher variation. In America, the 
levels of NO2 has a higher variation. It is interesting 
that the Fig. 11 reveals that Africa is quite an outlier 
compared to the continents America, Asia, Europe and 
Oceania (including Australia and New Zealand) with 
respect to the pollution PM10.  

Note that higher level of SO2 means a higher level of 
PM10 (see the correlations and their p-values in Table 2). 
The variations in the multivariate data are analyzed using 
the principal components. The first two principal 
components explained 66.7% of the total variations and 
the proximity among the variables NO2, PM10 and SO2. 
The NO2 is more closely connected to the urban 
population. More SO2 is associated with a higher PM10 
(see Fig. 9). Hence, this article focuses on the analysis 
and interpretations of only the PM10. 

The minimum level y(1) of PM10 is lowest in 
American continent and keeps rising in other continents 
in the order of Oceania, Europe, Asia and Africa (see 
Table 3). The order of the estimated severity, θ̂  is 
lowest in Oceania and keep rising in the other continents 
America, Europe, Asia and Africa in that order (see 
Table 3). The estimated regulated level φ̂  of the air 
pollution is lowest in Asia but is better in other 
continents Europe, America, Africa and Oceania in that 
order (see Table 3). The expected shift ˆ ˆˆ, ,τ θ φ

Shift  of the air 

pollution is lowest in Africa but it increases in other 
continents America, Oceania, Europe and Asia in that 
order (see Table 3). The tail value at risk (TVaR) of the 
air pollution function is  ( )> pE Y Y y  and it is the 

expected average in the tail of the frequency trend of the 
air pollution. The TVaR is lowest in America and it 
increases in the other continents Europe, Asia, Oceania and 
Africa in that order (see Table 3). The hope probability 
portrays the chance for the air pollution to remain within a 
tolerance level if it exceeded a warning level. The hope 
probability is best in Asia but declines in other continents 
Africa, Europe, America and Oceania in that order (see 
Table 3). If we think of nature as a chance oriented system 
for emitting air pollution, the system’s memory is lowest in 
Oceania but increases in other continents Asia, Africa, 
America and Europe in that order (see Table 3).  

 

 
 

Fig. 9. Hazard function h(y) in z-axis, φ in x-axis, and θ in y-axis 
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Fig. 10. American cities 
 

 
 

Fig. 11. Asian cities 
 

 

 
Fig. 12. European cities 
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Fig. 13. Proximities among PM10, SO2 and NO2 
 

 
 

Fig. 14. Proximity among the characteristic values 
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Fig. 15. Proximity among the continents in terms of PM10 

 
Table 3. A comparison of PM10 related matters among continents: Africa, America, Asia, Europe and Oceania  

→

↓

continent

Attribute
 Africa (17 cities) America (568 cities) Asia (396 cities) Europe (511 cities) Oceania (32 cities) 

 (1)τ̂ = y  20 6 10 9 8 

Severity θ̂   159.79 40.06 116.89 51.50 34.54 

regulated φ̂   0.977 0.904 0.504 0.83 2.07 

, ,τ θ φShift   0.0001 0.02 14.54 13.25 11.63 

TVaR ( 20)>E Y Y  177.09 59.68 69.93 63.24 127.72 

Hope probability  0.63 0.54 0.75 0.59 0.32 
Pr( 30 20)≤ >Y Y  

20, 10, , ,τ θ φ= =m smemory  0.13 0.13 0.12 0.29 0.06 

 ˆ ˆ( , )θ φcorr  -0.87 -0.84 -0.77 -0.82 -0.92 

p-value for : 0φ =oH  0.004 0.0001 0.0001 0.98 0.0002 

Power for 1 : 0.5φ =H  0.001 0.0001 0.999 0.98 0.564 

  
Remember that the estimated severity of the air 

pollution is inversely proportional to the estimated 
regulated level of the air pollution. This inverse relation 
is exhibited in their negative correlation. The estimated 
negative correlation is lowest in Oceania but increases in 
other continents Africa, America, Europe and Asia in 
that order (see Table 3). The null hypothesis 0 : 0φ =H  

portrays the insignificant regulated level of the air 
pollution and the p-value chance of rejecting the null 
hypothesis. The p-value is highest only in Europe but is 
smaller in all other continents Oceania, Africa, America 
and Asia. The power is the probability of accepting the 
alternative hypothesis 1 1:φ φ=H  in a hypothetical 

scenario in which the true value of the regulated level of 

the air pollution is 1 0.5φ = . The power is best in Asia 

and Europe, is reasonable in Oceania but is worst in 
African and American continents (see Table 3). 

The data analytics based statistical results identify the 
geometric distance among the results regulated, severity, 
TVaR, memory, shift, minimum and correlation levels of 
the continents (see Fig. 14) and it confirms the importance 
of the regulated level in the discussion of air pollution. 
Consequently, some continents are in close proximity than 
others with respect to air pollution (see Figure 13, Figure 14 
and Figure 15). African continent is alone as an outlier. The 
American continent is in the opposite spectrum of the Asian 
continent, while in the middle are the European and 
Oceania with very similar in the air pollution (see Fig. 15).  
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Comments and Conclusions 

This article has developed new statistical properties 
of the tapered probability function and demonstrated 
their utility to analyze and interpret air pollution trend on 
PM10. The derived analytical expressions helped to 
compare Africa, America, Asia, Europe and Oceanic 
continents. In particular, the extreme occurrences of the 
PM10 in these continents were captured and explained 
using the tail value at risk (TVaR), a probabilistic 
measures named hope probability and safety probability, 
stochastic measure of system’s memory level, how much 
the pollution has shifted on the average and how it 
controls the volatility of the pollution etc. The maximum 
likelihood estimators for the severity level, a threshold 
level and regulated level of the air pollution are obtained 
and applied in the data to capture and interpret the air 
pollution proximities among the continents. An expression 
for the hazard function of the air pollution is derived and 
demonstrated for all the continents (see Fig. 9).  

An expression to quantify the correlation between the 
estimated the severity level and regulated level of the air 
pollution has been derived and explained for all the 
continents. The locally most powerful likelihood ratio 
test methodology has been developed to examine 
whether the statistical estimate of the air pollution’s 
regulated level in a continent is significant and to 
estimate the statistical power of the test in an event 
having the true regulated level. With all these new 
expressions, the proximities among the continents with 
respect to the air pollution. Their graphical illustrations 
portray the importance of the computed results for the 
continents. Only the African continent is seen to be 
outlier compared to the other continents. Special 
expressions are identified for the Pareto and guaranteed 
exponential distributions as particular cases of our 
general results in the article.  

All these add to our better understanding the air 
pollution in cities across the continents. This 
understanding will assist governing agencies to 
formulate and implement regulated policies. The 
environmental professionals can easily mimic the 
approach of this article in their practice of controlling the 
air pollution in their jurisdiction. The healthcare 
professional are helped by the analytic results to better 
prepare to deal with the health impacts of worst air 
pollution before it ever occurs. Needless to mention is 
that the residents who have been suffering in major cities 
with severe air pollution are helped by the approach and 
methodology of this article eventually. 
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